# Gdot-Kdot

#### Notation:

$g_{ab}$ is the spatial metric, $\alpha$ is the scalar lapse function, $\beta^a$ is the shift vector, $D_a$ is the spatial covariant derivative, and $K_{ab}$ is the extrinsic curvature.

#### Equations of motion:

In terms of the time derivative operator $\partial_\perp \equiv \partial_t - {\mathcal L}_\beta$, the equations of motion are:

$\begin{array}{rcl} \partial_\perp g_{ab} & = & -2\alpha K_{ab} \\ \partial_\perp K_{ab} & = & \alpha K K_{ab} - 2\alpha K_{ac}K^c_b + \alpha R_{ab} - D_a D_b\alpha \\ \end{array}$

where $R_{ab}$ is the spatial Ricci tensor. Constraints and constraint evolution system:

$\begin{array}{rcl} {\mathcal H} & \equiv & K^2 - K_{ab}K^{ab} + R = 0 \\ {\mathcal M}_a & \equiv & D_b K^b_a - D_a K = 0 \\ \partial_\perp{\mathcal H} & = & 2\alpha K {\mathcal H} -4{\mathcal M}^a D_a\alpha - 2\alpha D_a {\mathcal M}^a \\ \partial_\perp{\mathcal M}_a & = & -\frac{1}{2}\alpha D_a{\mathcal H} - {\mathcal H}D_a\alpha + \alpha K {\mathcal M}_a \\ \end{array}$

#### Other relations:

$\partial_\perp(D_a {\mathcal M}^a) = -\frac{1}{2} \alpha D^2 {\mathcal H} - \frac{3}{2} D_a\alpha D^a{\mathcal H} - {\mathcal H} D^2\alpha + \alpha K D_a{\mathcal M}^a + 2 D_a(\alpha K^a_b{\mathcal M}_b)$