## Contents

#### Notation:

$\kappa \equiv 8\pi G$ where $G$ is Newton's constant. $g_{ab}$ is the spatial metric, $\alpha$ is the scalar lapse function, $\beta^a$ is the shift vector, and $D_a$ is the spatial covariant derivative. $P^{ab}$ is the conjugate momentum, related to the extrinsic curvature by

$\begin{array}{rcl} P^{ab} & = & \frac{1}{2\kappa} \sqrt{g} (K g^{ab}-K^{ab}) \\ K_{ab} & = & \frac{\kappa}{\sqrt{g}} (Pg_{ab}-2P_{ab}) \end{array}$

#### Hamiltonian

Time evolution is defined via Poisson brackets with the Hamiltonian

$H = \int d^3x ( \alpha {\mathcal H} + \beta^a {\mathcal M}_a )$

The Hamitonian and momentum constraints are

$\begin{array}{rcl} {\mathcal H} & \equiv & \frac{\kappa}{\sqrt{g}} ( 2 P^{ab} P_{ab} - P^2 ) - \frac{1}{2\kappa} \sqrt{g} R = 0 \\ {\mathcal M}_a & \equiv & -2D_b P^b_a = 0 \end{array}$

The fundamental Poisson brackets relations are $[g_{ij}(\vec x),P^{k\ell}(\vec y) ] = \delta_{(i}^k \delta_{j)}^\ell \delta^3(\vec x - \vec y)$ where $\delta^3(\vec x - \vec y)$ is the three--dimensional Dirac delta function.

#### Equations of motion:

In terms of the time derivative operator $\partial_\perp \equiv \partial_t - {\mathcal L}_\beta$, the ADM (Hamiltonian) equations are

$\begin{array}{rcl} \partial_\perp g_{ab} & = & 2\kappa\frac{\alpha}{\sqrt{g}} (2 P_{ab} - P g_{ab}) \\ \partial_\perp P^{ab} & = & \kappa\frac{\alpha}{\sqrt{g}} (P^{cd}P_{cd} - P^2/2 ) g^{ab} - 2\kappa\frac{\alpha}{\sqrt{g}} (2 P^{ac}P_c^b - P P^{ab}) - \frac{\alpha\sqrt{g}}{2\kappa} G^{ab} + \frac{\sqrt{g}}{2\kappa} (D^a D^b \alpha - g^{ab} D_c D^c\alpha ) \end{array}$

where $G^{ab}$ is the spatial Einstein tensor. The constraint evolution system is:

$\begin{array}{rcl} \partial_\perp{\mathcal H} & = & \alpha D_a{\mathcal M}^a + 2 {\mathcal M}^a D_a\alpha \\ \partial_\perp{\mathcal M}_a & = & {\mathcal H} D_a\alpha \end{array}$

#### Other relations:

The time derivative of the extrinsic curvature is

$\partial_\perp K_{ab} = \alpha K K_{ab} - 2\alpha K_{ac}K^c_b + \alpha R_{ab} - D_a D_b\alpha - \frac{\alpha}{4} ( K^2 - K^{cd}K_{cd} + R) g_{ab}$

where $R_{ab}$ and $R$ are the spatial Ricci tensor and spatial curvature scalar. The zero density constraints defined by York (see the gdot-Kdot system) are ${\mathcal H}^{\rm Y} \equiv K^2 - K_{ab}K^{ab} + R = 0$ and ${\mathcal M}_a^{\rm Y} \equiv D_b K^b_a - D_a K = 0$. They are related to the ADM constraints by ${\mathcal H} = -\sqrt{g} {\mathcal H}^{\rm Y}/(2\kappa)$ and ${\mathcal M}_a = \sqrt{g} {\mathcal M}_a^{\rm Y}/\kappa$. The York form of the constraints evolved with the Hamiltonian (ADM equations) are

$\begin{array}{rcl} \partial_\perp{\mathcal H}^{\rm Y} & = & \alpha K {\mathcal H}^{\rm Y} -4{\mathcal M}_a^{\rm Y} D^a\alpha - 2\alpha D^a {\mathcal M}_a^{\rm Y} \\ \partial_\perp{\mathcal M}_a^{\rm Y} & = & - \frac{1}{2}{\mathcal H}^{\rm Y} D_a\alpha + \alpha K {\mathcal M}_a^{\rm Y} \end{array}$